Non-Repudiation and End-to-End Security for Electric-Vehicle Charging

Innovative Smart Grid Technologies Europe 2019

September 30th, 2019

Authors

Pol Van Aubel

pol.vanaubel@cs.ru.nl

Erik Poll

erikpoll@cs.ru.nl

Joost Rijneveld

ioost@ioostriineveld.nl

This work is supported by the European Regional Development Fund (ERDF), Rijksoverheid, and Province of Gelderland, as part of the project Charge & Go.

iCIS | Digital Security Radboud University

Overview

The EV-charging infrastructure

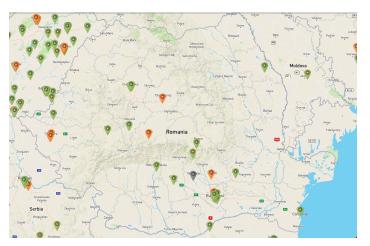
The need for security

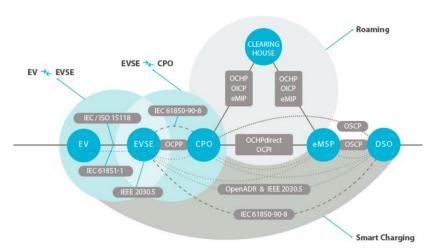
End-to-end security

Conclusions

Source: openchargemap.io

Source: openchargemap.io





Most important aspects

• Many roles, fulfilled by many different parties.

Most important aspects

- Many roles, fulfilled by many different parties.
- The only way for some of these to communicate is via other parties.

Overview

The EV-charging infrastructure

The need for security

End-to-end security

Conclusions

• Fraud

- Fraud
- Vandalism

- Fraud
- Vandalism
- Activism

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations" https://www.ccc.de/en/updates/2017/e-motor

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations" https://www.ccc.de/en/updates/2017/e-motor
- Grid destabilization

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations"
 https://www.ccc.de/en/updates/2017/e-motor
- Grid destabilization
 - Horus Scenario: hacking PV-installations https://horusscenario.com/

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations"
 https://www.ccc.de/en/updates/2017/e-motor
- Grid destabilization
 - Horus Scenario: hacking PV-installations https://horusscenario.com/
 - "Public Plug-in Electric Vehicles + Grid Data:
 Is a New Cyberattack Vector Viable?"
 https://arxiv.org/abs/1907.08283

• Privacy breaches

- Privacy breaches
 - Customer location is sensitive information!

- Privacy breaches
 - Customer location is sensitive information!
 - What other information should be secret?

- Privacy breaches
 - Customer location is sensitive information!
 - What other information should be secret?
 - GDPR compliance is not straightforward.

Current state of security

• Authentication / authorization with RFID cards

Current state of security

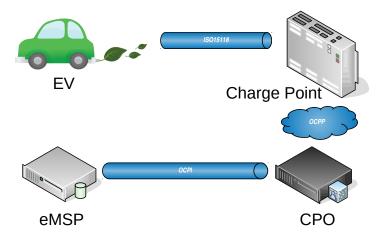
- Authentication / authorization with RFID cards
- Some TLS, lacking clear instructions

Envisioned state of security

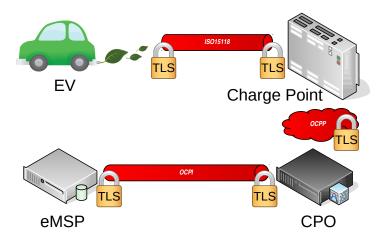
• Strong authentication using challenge-response

Envisioned state of security

- Strong authentication using challenge-response
- TLS everywhere, standardized & specified well


Envisioned state of security

- Strong authentication using challenge-response
- TLS everywhere, standardized & specified well
- Better implementations and testing


Are we done then?

Are we done then?

We're not done

• TLS protects the network traffic between individual parties.

We're not done

- TLS protects the network traffic between individual parties.
- Provides confidentiality and authenticity for the data only while being communicated between these parties.

We have to trust that every party

• doesn't send what it shouldn't,

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,
- doesn't peek at what it shouldn't see,

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,
- doesn't peek at what it shouldn't see,
- doesn't later dispute sending something,

Trust

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,
- doesn't peek at what it shouldn't see,
- doesn't later dispute sending something,

for whatever reason.

Overview

The EV-charging infrastructure

The need for security

End-to-end security

Conclusions

Main aspects:

confidentiality.

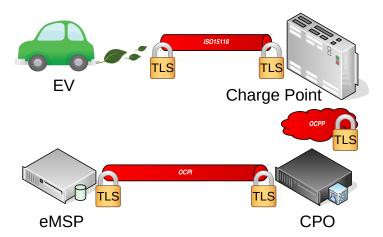
- confidentiality.
- authenticity.

- confidentiality.
- authenticity.
- non-repudiation.

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:
 - from the initial sending party on one side,

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:
 - from the initial sending party on one side,
 - to the eventual receiving party on the other side,



- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:
 - from the initial sending party on one side,
 - to the eventual receiving party on the other side,
 - regardless of how many parties are in between.

This is not end-to-end!

And it doesn't provide non-repudiation!

• Long-term guarantee of authenticity

And it doesn't provide non-repudiation!

- Long-term guarantee of authenticity
- Proof that a message was produced by that party

And it doesn't provide non-repudiation!

- Long-term guarantee of authenticity
- Proof that a message was produced by that party
 - (very useful in disputes!)

An example message

Charge Session	Start sent from	EV to CPO
----------------	-----------------	-----------

EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

An example message

EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

Charge Session Start sent from CPO to eMSP

EV ID	Time
101	2019-09-30 14:50

Contract ID	€/kWh
12501932	0.21

An example message

Charge	Session	Start	sent	from	F\/	tο	CPC	١
Charge	26221011	Start	SCH	110111	∟ v	ω	CFC	,

EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

Charge Session Start sent from CPO to eMSP

EV ID	Time
101	2019-09-30 14:50

Contract ID	€/kWh
12501932	0.21

CP Location is dropped because the eMSP doesn't need it.

Adding authenticity & non-repudiation – naïvely

Charge Session Start sent from I	EV to CPO
----------------------------------	-----------

EV ID	Time	CP Location	Contract ID	€/kWh	
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21	

Adding authenticity & non-repudiation - naïvely

Charge Session Start sent from EV to CPO

EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

Charge Session Start sent from CPO to eMSP

EV ID	Time
101	2019-09-30 14:50

Contract ID	€/kWh
12501932	0.21

Adding authenticity & non-repudiation – naïvely

EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

Charge Session Start sent from CPO to eMSP

EV ID	Time
101	2019-09-30 14:50

Contract ID	€/kWh
12501932	0.21

CP Location cannot be dropped because that invalidates the signature!

• Authenticity & non-repudiation (signatures)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed
 - Hard to achieve with normal signatures

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed
 - Hard to achieve with normal signatures
- Limited overhead (data billed per byte)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed
 - Hard to achieve with normal signatures
- Limited overhead (data billed per byte)
- Offline operation (some parties may be offline when a message is sent)

How do we solve this? Two signatures?

Charge Session Start sent from EV to CPO							
EV ID	Time	CP Location		EV ID	Time	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30 5°52'06.5		101	2019-09-30 14:50	12501932	
			H-				

How do we solve this? Two signatures?

Charge Session Start sent from EV to CPO							
EV ID	Time	CP Location		EV ID	Time	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30 5°52'06.5		101	2019-09-30 14:50	12501932	
			4—				

Charge Session Start sent from EV to CPO						
EV ID	Time	CP Location	Contract ID	€/kWh		
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21		

How do we solve this? Two signatures?


Charge Session Start sent from EV to CPO $\,$

EV ID	Time	CP Location	
101	2019-09-30 14:50	51°49'30 5°52'06.5	•
			<u> </u>

EV ID	Time	Contract ID	
101	2019-09-30	12501932	

Charge Session Start sent from EV to CPO

EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

€/kWh

Charge Session Start sent from CPO to eMSP

EV ID	Time	Contract ID	€/kWh
101	2019-09-30 14:50	12501932	0.21

This works, but...

• That's still a lot of overhead

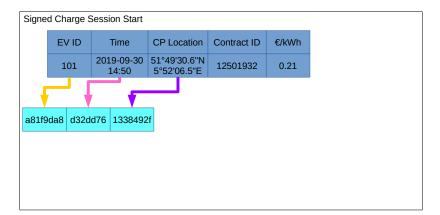
This works, but...

- That's still a lot of overhead
- Doesn't solve data minimization

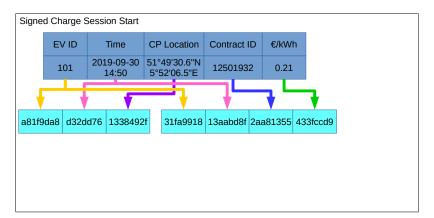
One signature using a hash tree

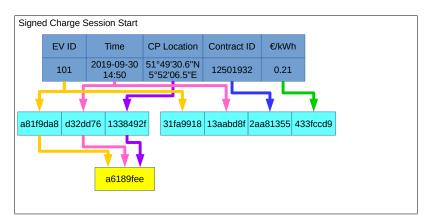
Signed Charge Session Start

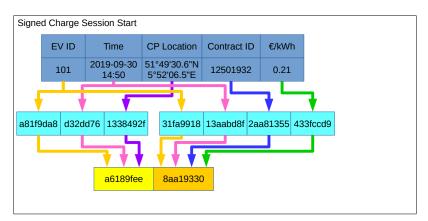
EV ID	Time	CP Location	Contract ID	€/kWh
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21

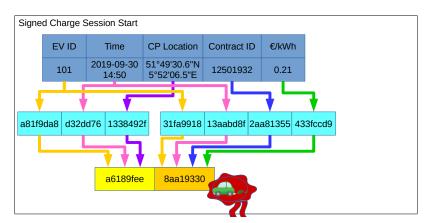


We take the hashes of individual data fields


Build the collection of hashes...

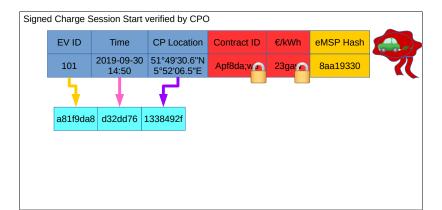

For each party that needs a signature


Then we hash those collections again...

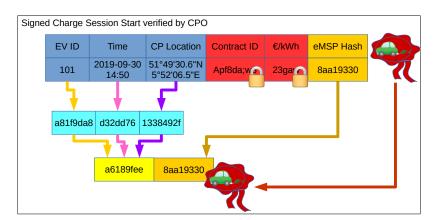

Into a final couple of hashes

And sign those hashes

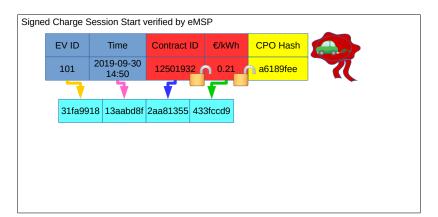
Overhead is minimized


Signed Charge Session Start sent by EV to CPO

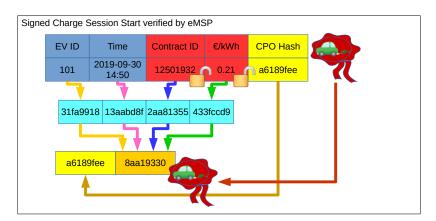
EV ID	Time	CP Location	Contract ID	€/kWh	eMSP Hash
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	Apf8da;w	23ga	8aa19330


CPO verification

CPO verification


Dropping & encrypting data now works

A
1


eMSP verification

eMSP verification

Cryptographic details

- We piggy-back on technologies that have to be present anyway:
 - Cryptographic algorithms from TLS
 - Public key infrastructure
 - JSON message formatting

Overview

The EV-charging infrastructure

The need for security

End-to-end security

• EV-charging infrastructure is complex, with many actors.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.
- Protocols will need to be changed to deal with this.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.
- Protocols will need to be changed to deal with this.
- The industry needs to agree on which party should see what data.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.
- Protocols will need to be changed to deal with this.
- The industry needs to agree on which party should see what data.
- This scheme works in other cases with similar requirements.

